«Roc-Kurve Analyse in sas» . «Roc-Kurve Analyse in sas».

Analyze and compare ROC curves

When a test is used either for the purpose of screening or to exclude a diagnostic possibility, a cut-off value with a higher sensitivity may be selected and when a test is used to confirm a disease, a higher specificity may be required.

ROC-Kurve – Wikipedia

consider you have testing dataset x_test for features and y_test for its corresponding targets.

ROC Curve Analysis in R Example Tutorial - YouTube

perfcurve then finds the optimal operating point by moving the straight line with slope S from the upper left corner of the ROC plot ( FPR = 5 , TPR = 6 ) down and to the right, until it intersects the ROC curve.

ROC and AUC in R - YouTube

The AUC is printed if =TRUE.

ROC Curves in R - YouTube

Algorithmus zum Erstellen einer ROC-Kurve

Auc: Compute the area under the ROC curve in pROC: Display and...

Calculate metrics globally by considering each element of the label indicator matrix as a label.

[ X , Y , T , AUC ] = perfcurve( labels , scores , posclass ) returns the area under the curve for the computed values of X and Y.

In this post I’ll work through the geometry exercise of computing the area, and develop a concise vectorized function that uses this approach. Then we’ll look at another way of viewing AUC which leads to a probabilistic interpretation.

if TRUE , the NA values will be removed (ignored by ).

For , and arguments, an AUC specification is required. By default, the total AUC is plotted, but you may want a partial AUCs. The specification is defined by:

Indicator to use the nearest values in the data instead of the specified numeric XVals or TVals , specified as the comma-separated pair consisting of 'UseNearest' and either 'on' or 'off'.

Например, представим, что уровни какого-нибудь белка в крови распределены нормально с центрами, равными 6 г / дЛ и 7 г / дЛ у здоровых и больных людей соответственно. Медицинский тест может давать показатель уровня какого-либо белка в плазме крови. Уровень белка выше определенной границы может рассматриваться как признак заболевания. Исследователь может сдвигать границу (черная вертикальная линия на рисунке), что приведет к изменению числа ложно-положительных результатов. Результирующий вид ROC-кривой зависит от степени пересечения двух распределений.

The density (green) smoothing also produces a lower (Δ = -, p = 6*65 -7 ) AUC. It is interesting to note that even with a smaller difference in AUCs, the p-value can be more significant due to a higher covariance.


Еще интересное

ROC curve analysis. Interactive dot diagram. Plot versus criterion values. Can someone explain me please how to plot a ROC curve with ROCR. I know that I should first run